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A NUMERICAL METHOD FOR EVALUATING ZEROS
OF SOLUTIONS OF SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS

RENATO SPIGLER AND MARCO VIANELLO

ABSTRACT. A numerical algorithm for computing real zeros of solutions of 2nd-
order linear differential equations y" + g(x)y = 0 in the oscillatory case on a
half line is studied. The method applies to the class g(x) = a+b/x+O0(x7?),
with a>0, beR, p> 1.

This procedure is based on a certain nonlinear 3rd-order equation (Kum-
mer’s equation) which plays a role in the theory of transformations of 2nd-order
differential equations into each other, and was earlier introduced by F. W. J.
Olver in 1950 to compute zeros of cylinder functions. A rigorous asymptotic
and numerical analysis is developed by combining Borvka’s approach to the
study of Kummer’s equation and Olver’s original idea. Numerical examples are
presented.

1. INTRODUCTION

In this paper we develop a numerical algorithm for computing real zeros of
solutions of 2nd-order linear ordinary differential equations, such as

(1.1) V' +q(x)y =0,

on a half line, in the oscillatory case.
Our method applies to the case

(1.2) gx)=a+b/x+0(x""),

with a > 0, b € R, p > 1, and the (technical) hypothesis of analyticity.
The form of ¢(x) in (1.2) includes many important cases, such as that of the
Bessel equation, the Coulomb wave equation, several cases of the confluent
hypergeometric equation (see [13]), etc.

The procedure is based on a certain nonlinear 3rd-order differential equation
(Kummer’s equation), which plays a role in the theory of transformations of
linear ordinary 2nd-order differential equations into each other, and was earlier
introduced by F. W. J. Olver in 1950 [8] to compute zeros of cylinder functions.
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Neither a general theory nor a proof of convergence was given by Olver at
that time, but computational work was successfully carried out with the help of
a certain algorithm suggested by the asymptotic behavior of the zeros.

In this paper, a more rigorous analysis is developed by combining Boriivka’s
approach to the study of Kummer’s equation [4] and Olver’s original idea.
More precisely, we obtain an iterative scheme which converges in a suitable
sense when n (the iteration number) goes to oo. Initialization is provided by
a certain preliminary asymptotic analysis based on the asymptotic behavior of
g(x) in (1.1). Theorem 3.2 contains the main result of the paper (the proof
of convergence), Corollary 3.3 shows that our method yields results much more
accurate than the asymptotics alone when computing large zeros. At the same
time, the theorem shows that the number of iterations needed for obtaining a
given accuracy, say &, is asymptotically proportional to —loge, as ¢ — 0" .

The plan of the paper is as follows. In §2, the problem is formulated and
the relevant definitions and assumptions are laid down. The asymptotic part
is worked out here, starting from the asymptotic representation assumed for
q(x). In §3, we give the main result, and a basic preliminary lemma is proved
concerning a certain complex-valued function of three complex variables. In
84, several numerical examples are presented.

2. PRELIMINARY ASYMPTOTIC ANALYSIS

We are concerned with the problem of evaluating the real zeros of any par-
ticular solution of a 2nd-order differential equation such as (1.1) on a half line,
in the case when there exist infinitely many real zeros (oscillatory case).

Following Borlivka’s terminology, we shall below refer to g(x) in (1.1) as
“the carrier” of the equation. For clarity and convenience, we shall consider
first the case & = 0 in (1.2). Results, similar to those in Theorem 3.2, for the
general case b # 0 will be stated at the end of §3, in Remark 3.4.

We shall assume that the carrier enjoys the following properties. First of
all, g(x) is the restriction to the real half line, say x > p, of a function ¢q(z)
holomorphic in an annular sector S .y

(2.1) S,,={z:z€C, |z]>p, |arg(z)| < v},

for certain p, y, where p > 0 and 0 < y < m/2. Moreover, we assume that
q(z) possesses the asymptotic structure

(2.2) q(z)=a+ Q(z), a > 0 (constant),

(2.3) Q(z)=0(z""), p > 1 (constant).

More precisely, we stipulate that the holomorphic function Q(z) is estimated
according to (2.3) by

(2.4) |0(2)| < K|z| 7, zes, .

Our method for evaluating zeros is based on the derivation of a “phase
function”, «a(x), relative to a given basis. Such a function is defined as any
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C3-solution to the equation
(2.5) tana(x) = u(x)/v(x),

u(x) and v(x) being any two linearly independent solutions to (1.1); cf. [4,
pp. 36-39]. In fact, the zeros being sought are the solutions to

(2.6) y(x, a)=u(x)cosa —v(x)sina=0,

which can be considered as a relation between x and a. A phase function has
the property that

(27) |a(xk)_a('xk_1)|=n’ k=1’2a3""a

for any two consecutive zeros of any particular solution to (1.1), although «
depends on the special choice of the basis (u(x), v(x)); cf. [4, p. 38]. By
inverting relation (2.7) one can thus compute the zeros, x, .

On the other hand, we obtain from (2.5)

(2.8) o/ () =~
u (x)+v°(x)
where W is the (constant) Wronskian of u(x), v(x).

Equation (2.8) can be used to obtain «(x), whenever u and v are at hand;
cf., e.g., [11]. Moreover, one can obtain at once uz(x) + vz(x) as a solution
to a well-known third-order linear differential equation that can be constructed
explicitly [2, 3, 12]. It is possible, however, to eliminate ¥ and v in (2.8),
obtaining a closed-form third-order nonlinear differential equation satisfied by
a(x) alone. This task can be accomplished by repeated differentiation and
using the fact that u” = —qu, v" = —qv ; the details are left to the reader. The
resulting equation is

(2.9) o = q(x) - Ha, x},
where
a/// 3 a// 2
(2.10) {a,x}=2 -2 (<
a 2 (a )

denotes the so-called “Schwarzian derivative” (cf., e.g., [6, p. 647]). Equation
(2.9) is a special case of the so-called Kummer’s equation, and appears in the
theory of transformations of second-order linear differential equations; cf. [4].
One of the advantages in this approach is that one avoids evaluating the solu-
tions u, v to (1.1) or their combination u' + 07,

The concept of phase plays a central role in describing solutions and proper-
ties of second-order linear differential equations. This provides, in fact, a key
to obtaining any particular solution to (1.1) (cf. [4, §5.7, p. 39]) as well as its
zeros and its stationary points (see Remark 4.2 below). Approximating a certain
phase by our procedure described below will enable us to compute globally the
zeros of any particular solution.
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In [8] Olver derived a third-order nonlinear differential equation satisfied by
the generic zero, x = p(a), of y(x, a) defined in (2.6), as a function of the
real parameter «. This equation can be written as

| 1
2.11 ’2=——<1—— ,a).
(2.11) P =0 51p, a}
It is easily checked that equation (2.9) changes into (2.11) upon the transfor-
mation p = p(a) and conversely (note that « is invertible as sgna’ = —sgn W ;
cf. (2.8)).

In [8] Olver was mainly concerned with the evaluation of zeros of cylinder
functions. In this case it turns out that {p, a} = O(a_3) as a — +0o0, and he
used the following iterative scheme:

p/2_ 1
0 — 7\
(2.12) 2 Q(p;)) |
/
= — 1——— 5 5 n=0,1,2,...,
& q(p,,+,>< )

suggested by (2.11). We found it more convenient to base our approach on
equation (2.9) rather than (2.11). Therefore, we introduce the iterative scheme

2
ap = q(x),
2

(2.13)
ap,, =qx)—Hae,,x}, n=0,1,2,....

Note that Olver’s method requires solving a differential equation at each step
(for p,.,(a)), while ours merely involves quadratures (indeed, only one at the
end of the whole procedure; see §4). We must however obtain the zeros from
a,(+) while Olver’s approach yields them directly. Moreover, no proof of con-
vergence of the algorithm (2.12) was given in [8].

In §3, we shall prove that the sequence o/n (x) defined by (2.13), with g(x) in
the class described above, converges (in a suitable sense) to a solution, o (x), of
(2.9) possessing a certain asymptotic behavior. This solution, o, is such that
relation (2.8) holds, (u, v) being a Liouville-Green basis (or WKBJ; cf. [10]),
and W the (constant) Wronskian of # and v. The initialization in (2.13)
is suggested by the fact that we want to approximate precisely such a phase
function. We call this phase function a “Liouville-Green phase”.

If we set

(2.14) $p=(e)’,  n=0,1,2,...,
the scheme (2.13) becomes
(2.15) ¢0=q(x)a

¢n+l=q(x)+[¢n’x]’ n=0’l’2’-.-,
where we have introduced the symbol
¢\’
5

(2.16) [¢,x]5—%%—+1—56—<
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Then ¢,(x) will approximate ¢(x), the solution to

(2.17) ¢ =4q(x)+[9, x],
into which equation (2.9) is transformed by setting
(2.18) 6= ().

This procedure has the advantage of avoiding handling square roots, which
causes complications when working in the complex plane. Moreover, using ¢,
instead of «, is also convenient in view of symbolic manipulations; cf. §4. In
fact, (2.15) yields ¢, as a rational function of g and its derivatives up to order
2n.

Note that {a, x} = —2[#, x] and that (2.17) is a second-order differential
equation for ¢, while recursion (2.15) is no longer a differential equation for
#,,, - Only a single quadrature on ¢:,/ 2()c) has to be accomplished at the end,
for the value of » related to a given accuracy.

Starting from the asymptotic assumptions (2.2)-(2.3) on the carrier g(x),
we now obtain the asymptotic behavior of the auxiliary function ¢(x) which
will be necessary for estimating the term [¢, x].

Since in proving the convergence of ¢, to ¢, estimates are needed on the
derivatives of ¢, — ¢ (cf. [¢,, x] in (2.15)), we “complexify” all quantities
involved, extending them from the real half line into a sector .S. We start with
a complex Liouville-Green basis in S . Following Olver [10], we split the carrier
q(z) into two parts, f(z) and g(z), q(z) = f(z) + g(z), where

(2.19) f(z)=a, g(2)=0(2)=0(z"").
Theorem 11.1 in [10, Chapter 6] yields the basis

U(z) = f*(2)e“[1 +¢,(2)],

2.20 .

(220 V(z)= " (2)e Pl +&,(2)],
where

(2.21) ()= [ ")

and

ooy |<exp{Vf (F)} -1,

i .
l€}(z2)] < 1P @lexp{V) ()} = 1),  j=1,2;
here VZIJ,OO(F ) denotes the variation of F,
(2.23) F =F(z) E/ (D g Py,

along the path l , j=1,2. The path !/ ; connects z t0 oo remaining inside
S/J , and has the property of being “&-progressive”, i.e., Im[&(z)] is nonin-
creasing along /, and nondecreasing along /, (cf. [10, p. 222]). The splitting
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of g must satisfy only the requirement that the variation Vf o (F) be finite
for j=1,2 and all z in S ., - The choice (2.19) is acceptable

Above, we chose for the square root the branch that is continuous and real
positive for real positive argument; moreover, we stipulate that (f 1 4)2 =
f_l/z; cf. [10, p. 222]. Therefore, all quantities above, f_'/z(z) , &(2), sj(z) ,
F(z), U(z), V(z), are holomorphic in the simply connected region .§ R We
get

(2.24) E(z)=a'l?

where the constant of integration in (2.21) has been chosen equal to zero, with
no loss of generality.
The variation of F(z) introduced above is defined by

t
(2.25) Vi oF) = [CIF GO 0ld,

tl
where the path lj is parametrically defined by z = z(¢), t, <t < t,; cf. [10,
Chapter 1, p. 29]. It is easy to check that, because of (2.24), if Imz > 0, the
straight half-line through the origin and z € § T joining z to oo, can be
taken as the path /,. As for [,, we can take the circular arc with radius |z]|
joining z to the point (|z|, 0) and then the real half line x > |z| (see Figure
1). If Imz < 0, we interchange the roles of /; and /,.

Therefore, we have

(2.26) F(z)=a " / “owdt,

(2.27) V) o) <k 12", j=1,2,
where

(2.28) (p) = <y+p—l—1) K

(7 could be omitted in (2.28) when estimating VZ]', ) - An estimate for ¢ ; then
follows:

! !
le;(2)| < V! exp{V, .}
-1/2 —1/2 1- 1- .
<k(p)aPexpix(p)a?p'"yz|'",  j=1,2,
since |z| > p forany z€ S ,.,- Note the double asymptotic nature in ¢ (2) =

(2.29)

O(a_l/ 21-p ) with respect to both the variable z, as z — oo in S, 5 and
the parameter a, as a — +oo. This fact is related to the well-known double
asymptotic nature of the Liouville-Green approximations [10, Chapter 6].

At this point, we construct the real Liouville-Green basis, i.e., a linear com-
bination of U(z) and V(z) which is real on the real axis. Recalling that
V(x) =U(x) (cf. [10, Chapter 6]), we obtain the real basis

(2.30) u(x) =ReU(x), v(x)=ImU(x).
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Im z
z-plane
8997 e1
z
- b
y 2
0 + I .
0 |z] x=Re z
FIGURE 1

“E-progressive” paths in the z-plane for the case Imz > 0

It is clear now that u(x), v(x) can be holomorphically continued (in a unique
way) into S, by the relations
U(z)+V(z2) U(z)-V(2)

2 ’ 2i )
Correspondingly, the auxiliary function ¢(x) can be extended by
w2
(2.32) ¢(z) = .
[1?(2) + v*(2))°

This extension is valid, however, only in a subset of S P where uz(z) +

v3(2) #0.

This is, in fact, true in S, ,NR= {x:x>p},and in Sp’y as well, provided
that

(2.33) W (z) +v2(2) = U(2)V(2) =a” *[1 +¢,(2)][1 + &,(2)] £ 0,

i.e., for |e j(z)l <1, j=1, 2. This entails a possible restriction of Sp,y to an
annular sector with a larger value of p (but with unchanged angle). Below we

(2.31) u(z) = v(z) =
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shall use the same symbol for this modified sector. Equation (2.17) itself can
be considered as a differential equation in S e

We now obtain a preliminary asymptotic approx1mat10n for ¢(z) as z — oo
in S ooye Evaluating the (constant) Wronskian

(2.34) Wlu(z), v(z)]=1
through (2.20), we get from (2.32), (2.33), (2.29)
(2.35) é(z) = a =a[l + 0@ "*z'77)].

[1+¢,(2)F[1+ e, (2))
We can go further and improve this asymptotic approximation as follows.

Using the asymptotic differentiation theorem [10, Chapter 1], we obtain from
(2.35)

(2.36) $(z)=0a"z"), ¢"=0a"z""), zes, .,

where 0 <y’ =y -4 and p’ = p/(1 —sind), & being an arbitrary but fixed
number with 0 < J < /2. The O-symbols in (2.36) depend on J.
Using this result in (2.16) we obtain

6.2 L 0@ s [ 0@'?z™") ]2
4a+0"?2'77) 16 |a+ 0@a'/?2'7P)
=0@'*z7'7?), zeS,
and thus, from (2.17) (considered in Sp,’y,) ,

(2.37)

(2.38) #(z)=q(z)+ 0@ 277",  zes, .,

Remark 2.1. Note that a larger value of a, a > 0, yields better estimates in
(2.38). In particular, for a > 1 the estimates can be given uniformly in a.

We observe, in closing, that we had to pass through the complex Liouville-
Green basis, as the phase functions were earlier defined only on the rea/ line in
Boruvka’s theory.

3. THE ITERATIVE SCHEME

The numerical scheme consists of solving iteratively equations (2.15) for ¢, ,
ie.,

do(2) = 4(z),
¢n+l(z)=q(z)+[¢n,z], n=0,1,2,....

Below, we shall prove the convergence of this scheme (in a suitable sense)
to the solution of (2.17) corresponding to the Liouville-Green basis. For this
purpose we need a basic lemma. Hereafter, for convenience, we change the

independent variable z by setting z = B¢, with § > 0 to be specified later.
Such a transformation takes equation (1.1) into

(3.2) V' +a@)y =0,

(3.1)
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for y(t) = y(Bt), where

(3.3) d(t)= B*q(Bt) = B’la+ O(B~"1™")].
Below, we apply algorithm (3.1) to (3.2)-(3.3), thus obtaining
(3.4) Bo(1) = 4(2),

G () =d(1) +[9,, 21, n=0,1,2,....
These quantities approximate (in the sense defined in Theorem 3.2) the func-
tion

fon (W)
(33) Y0 = W20 + BT

a solution of

(3.6) ¢

It is easily shown that @(¢) =
is to approximate ¢, but we fin
then to go back to ¢.

Lemma 3.1. Let

. 1z 5 (z2,\?
(3.7) G(z,, z,, z3)Eq—Z-Z—T+E <;?—)
be a complex-valued function of the three complex variables z,, z,, z,, defined
on the closed polydisc P =D, xD, x D, , where D, = B(c, ¢,), D, =B(0, ¢,),
and Dy = B(0, &;), with B(z,, r) C C denoting the open ball with center in z,
and radius r and 0 < & < c (c a positive constant), ¢, >0, g;,>0; §eC
is a constant. Then G is uniformly Lipschitz continuous in P,

(1 +14, 1.

q
o(pt) and qS (t) = B #,(Bt) . Our objective
it more convenient to first consider ¢ and

g
d it

(3.8) |G(z) - G(m)| < xllz—mnll, Vz,n€eP,
where = (z,, z,, z3), 1= (N, Ny, 1), and
2
(3.9) X=\/—§max % 5+ 3 = 3¢y 5 ! )
4 (c—¢)" 2c—¢) 2c—¢) c—¢&

Proof. The function G is holomorphic in P (being separately holomorphic in
each of the zs, by Hartog’s theorem). We obtain

(3.10) 9G _z; 55 96 _52% G _ 1
) azl_ZZf 8? 622_82%’ azs— iz,

and then, by the mean-value theorem,
(3.11) |G(z) — G(n)| < sup ]{II grad G(t)||} - llz—n||;
t€lz,n

cf. [7]. In fact, this property holds for Cl-mappings G:(UcB,)— B,, where
U is a convex subset of B,, and B, and B, are Banach spaces. In (3.11),
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[z, 7] denotes the segment in c? joining z and #, which is obviously a subset
of P forany z,n € P, since P is a convex set in C>. The norms on the
right-hand side of (3.11) represent the Euclidean norms in C°. Using (3.11)
we get (3.8), (3.9), since

9G(t)
. <
(3.12) ||gradG(1)||_\/§lrg%x3 5z, |’
and
2
06| 1 6 5 &
(313) 62[ 4(C—8) 8(C_81)
_3_G <§ ) % <l 1
822 _8((,'—81)2’ 323 —4(6'—8])’

uniformly in P. The lemma is thus proved. O

%Imz

x=Re z

FIGURE 2

The decreasing sequence of sectors S, in the z-plane, used in
Theorem 3.2
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Consider the iterative scheme (3.4) and recall that S ., 18 the (annular)
sector in which the estimate (2.38) holds. We denote by S(0, y') the sector

. . o . . ! .
having its vertex at the origin and semiangle y", and we consider a sequence of
sectors

(3.14) S, =x,+S5(0,7),

where x,, their vertices, is an increasing sequence of positive numbers (see
Figure 2). At this point we state our main result as a theorem.

Theorem 3.2. Suppose that equation (1.1) is given with the carrier q(z) satisfying
all hypotheses stated in §2. Let B be any fixed real number with B > a2,
Then there exists x, € S .y N R, which depends on all parameters entering the
problem (but not on ), such that, if S, is the sector defined in (3.14) with

(3.15) x =xO+M,
sin y

then the function ¢,(z) given by the scheme (3.1) is holomorphic in S, and

“converges” to the function ¢(z) related to the Liouville-Green basis by (2.32).

The convergence is in the sense that
(3.16) 16,(2) = d(2)| = a”*(Ba"*) " O((|2] - npv2) ")
for zeS, and n=0,1,2,....
Proof. The proof proceeds inductively on » € N. We first change z into ¢,
z = Bt in our problem.

The transformation z = ft takes equation (1.1) into (3.2) and its carrier
q(z) into §(z) given by (3.3). Correspondingly, the Liouville-Green basis of
(1.1), (u(z), v(z)), is transformed into (#i(¢), 9(¢)). Let ¢(¢) be the function

defined in (3.5), i.e., the quantity corresponding to ¢ for equation (3.2), (3.3).
Note that this is not the transform of ¢ under z = 8¢. The initial sector S Ly
of the complex z-plane is transformed into the sector S, > where r' = p'/B,
of the gomplex t-plane. i

As ¢(t) = B2¢(Bt) and ¢,(7) = ,82¢ (Bt), the estimate (2.38) becomes
(3.17) ) =dn)+p'a" o), teS, .

As for the derivatives, we get from (2.36)

!

(3.18) J’ (t) = al/z 3—p0(t—p)’ t;l~5”(t) _ al/2’B3—p0(t—p—1), t €»§r1’},/ )

We are now ready for the inductive proof. For n = 0, we have from (3.17),
(3.4)

(3.19)  16(t) — G0 = 1$(t) —d(0)| = B' "a” PO "), teS, .

r.,y
Suppose that the estimate

(3.20) 16, (1) — () = B Pa~ 2 (Ba"*) " O(()t] - nv2) "' 7)
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holds in the sector S, with vertex in ¢, = x,/8 +nv2/siny’, for some x, > p'
(to be determined below); cf. (3.15). Then, as in the proof of Lemma 3.1,

'q;(t) - ésn_'_l(t)l = |G(¢§’ qzl s Q‘S”) - G((ﬁn s (5;, s a’l,,l)l
(3.21) < sup {llerad G(r)|}|w—w, I
TE W, W,

where w= (¢, ¢', ¢") € C’and w, = (§,, §,, ¢) € C’ depend on . We still
have, however, to identify a polydisc in which Lemma 3.1 holds. In estimating
the norm |w—w ||, we use (3.20) in the Cauchy formula to get

(3.22) 16V (1) - V(1) <

~

(\/_) §lelp|¢ )= 6,0, teS,,,,

where C denotes the circle with center in ¢ and radius v2. The sup in (3.22)
is estimated by (3.20) using the structure of the sequence of sectors .S, . Thus,

30— 30 < I
(3.22) |¢°(t) = &, (t)l_(ﬁ),

x O([lt| = (n + DHV2]~

l—pa—l/Z(ﬁal/Z)—Zn

~

), teS

n+l1°

1

It is clear, finally, that
lw—w,Il < V3max{|$ - §,|, ¢ - &.|, ¢" — .|}
(3.23) — \/gﬁl_Pa—l/z(ﬂal/Z)—Zn
_l_ ~
SOt - (n+ )V2)T TP, eSS,

In order to estimate | grad G|| by Lemma 3.1, we have to estimate the radii
of the component discs of the polydisc. We have

16,(2) = Bal < |3(2) — Bal +18,(t) — (1)
<BPO?) + B Pa A (gAY T o((It) - nv2) 1),

> 1, the estimate

(3.24)

and then, as Ba'/ 2

_ —p—1
(3.24) 18,(1)-B’al < B*FO ((%) ,,) +8 a0 ((%) ’ ) =e,,

say, uniformly in » and ¢ € .§n +1 - Similarly, noticing that

=1 172 p3—p z\7" _p2 2B 1-p
25y PWI=aTh 0(@» ) g (i) o™

< pla'?0(z'?) < BPa*0(x) "), forted

n+l1°?

as |z| > xy+(n+1 )BV?2/siny’, and thus |z| > x, as well as |z| > V2, and

" 1/2 ,3—p z\ 7" 22 ( B\ . _—pel
(3.25) Pl<a Ol(ﬂ> ] ba (I I) o)

< B*a'?o(x;""), forte§

n+l°
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we obtain
|6, (0)] < 18" (0] +16'(0) = 6,(1)]
< /32 I/ZO(X(;—p)+ﬂl—pa—l/20 [(_%)—p—l}
(326 y =B~2”[al/20()f§—p> +gl—l/20(x0—p—1)] =e,,
|6,(DI < [ ()] + |97 (2) — 8,(2)]
,32 1/2 o( 0—p+1)+'31—pa—1/20[(icg>—p—1}
B
ﬂ[ 112, Ox p+l)+a—l/20(x p— l)]—“’l
Writing
(3.27) e, = fi(x,, a)fa, i=1,2,3,

Jf; being defined by (3.24'), (3.26), we first claim that 1/(c — 83) %(l/ﬁ a),
with ¢ = Bza. This entails the estimate

2
(3.28) 0<ey< %ﬂ,
which can be satisfied by choosing x, sufficiently large, say x, > x(') , since
fi(xy, a) is infinitesimal as x, — +o0o. Now we observe that (3.24') ensures
that ‘5” dces not vanish in S, , and therefore ‘5,1 +1 18 holomorphic in Sn y
We then claim y < (1/3/4)/(c — &) (c = ,Bza), i.e., we can choose ¢, and
¢, in such a way that the other two components of grad G are estimated by
%(1/ ,Bza). This can be done again, because f; is infinitesimal, for x, suffi-
ciently large, say x; > x(/)' . We conclude that

V3 1
| X< _3—;2—‘1 ,
and hence, by Lemma 3.1, using (3.21) and (3.23), we get
|6(t) = 8, (1)l

(3.30) f V3B pa Ol - (n+ VD))

(3.29)

=ﬂ1“"a ‘”(ﬂ a)" "o - (n+1)v2)7' ", te§

n+l?

provided that x, > max{p’, xy, X, } . This value of x, depends, in general,
on all parameters entering the problem (except ). Comparing (3.30) with
(3.20) and going back to the variable z, it is clear that the inductive proof is
complete. O

Some observations are now in order. In the proof above, the condition
,Bza > 1 was needed. The transformation z = f¢ with f > a~'"? is therefore
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instrumental in reducing equation (1.1) to an equation to which the algorithm
(3.1) can be applied when a < 1. Moreover, it is clear from (3.16) that the
larger p’za the faster the “convergence” of the algorithm. However, larger val-
ues of B reduce the Re(?)-interval for a given x-interval (x = Re(z)) in which
we want to evaluate zeros. Therefore, the zeros are not so well separated when
we choose S large.

Going back to the z-variable, the vertices of the sectors S, increase linearly
with B (and with n); cf. (3.15). This entails that the zeros lying outside S,
cannot be approximated by using the estimate in (3.16) for ¢.

As a corollary of Theorem 3.2, we can relate the desired accuracy to the
number of iterations needed to attain it.

Corollary 3.3. The number of iterations, n(e), needed to attain the accuracy &
in the iterative scheme (3.1) is asymptotically given by

(3.31) . losel e—0"
log(8%a)’ ’
uniformly in z, z € Sn(e).

Proof. From (3.16), the condition |¢,(z) — ¢(z)| < €, with |z| — nBV2 > X,
forall z in S, ie.,

a?(BPa) "0y ") <6, Vzes,,

is certainly satisfied when n > (C —loge)/lo ,B a) for some constant C, and
thus choosing

| loge|

log(8°a)’ e

In the next section, we shall numerically compute zeros of solutions to equa-
tion (1.1) starting from the approximation ¢, of the function ¢. If we approx-
imate ¢ within an accuracy ¢, i.e., use an(e) , we “lose” zeros in the sense that
our procedure is asymptotic in nature, and only those zeros lying in Sy can
be approximated. In fact, we get from [5, Chapter XI, Corollary 5.3, p. 348]
the asymptotic estimate

n=ne)~

(3.32) N(p, x) ~ %x as x — +o0o

for the number of zeros in the interval (p, x). Using (3.31) in
B\/_ BV2

(3.33) Koy = o+ (@) ~ L),

and this in (3.32) with x = Xy » W obtam

(3.34) N(p, X)) ~ Alloge| ase—0",

where

(3.35) A pv2a

nsiny’ log(B%a)
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This shows the advantage of our approach compared to the mere asymptotic
approximation (¢ — @, = ¢). In fact, in order to obtain the same degree of
accuracy, the latter requires x > X(¢) = (Ba~ /%) //*P)g=1/(I+P) '\where B is the
constant in the O-symbol in (2.38). We emphasize, finally, that our approach
is not only better because of logarithmic growth as opposed to power growth as
¢ — 0", but also because we made coarse estimates in obtaining (3.31). Better

results could have been obtained by taking into account the z-dependence in
(3.16).

Remark 3.4. Theorem 3.2 also holds for the more general class of carriers
q(z)=a+§+Q(z), a>0, beR,

Q(z)=0(z""), p>1.
This form allows us to 1nclude carriers havmg full asymptotic or convergent

(3.36)

power series expansions in z ' like > j=04;Z *. Wecan write
(3.37) 2= (Va+ 5753 Yo,  w=minp.2,
and split ¢(z) as q(z) = f(z )+g(z), with
(3.38) Va+ 22 2 (z) = Q(z) - b1

. 2\/52 ’ g - 4a 22 :

Indeed, in this case it is easily shown that the &-progressive paths are un-
changed with respect to the case b = 0, the variation defined in (2.25) being
correspondingly finite at the same time. We shall choose |z| > |b|/2a, which
amounts to selecting the principal branch of f 172 (z). This entails, possibly,
an increase of the radius p in the annular sector, S o Moreover, it turns
out that Vzlf’oo = O(Z_A) , where 4 = min{p — 1, 1}, and then € = O(Z_l) ,
#(z) = q(z) + O(z~*"%). We conclude that Theorem 3.2 holds with A + 2
replacing p + 1. We observe, in closing, that the O-symbols in the estimate
of VZI{ - » and thus in the estimates of & ; and ¢, depend in general on b (in
addition to a, p, y, p, K, as before).

4, NUMERICAL EXAMPLES

If a(x) denotes a Liouville-Green phase, then the relation (2.7) and the
definition (2.18) ensure that the equation

(4.1) a(x,) —alx / ¢1/2 dt=m,

X, being any fixed zero, has the unique solution x = x, _; (relation (4.1) ac-
tually refers to the Liouville-Green basis (v, #)). In practice we solve, instead,
equation

(4.2) / " 82 ay
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In fact, we start from an approximation X, of a certain “large” zero, X, ,
and compute successively the approximate values of the smaller zeros x, ,
k=h-1,h-2,..., which are denoted by X, . The initial value X, must be
supplied independently of our method. Moreover, throughout all of the proce-
dure, the approximation ¢, of ¢ is used, the corresponding error being given
by Theorem 3.2.

Therefore, in evaluating zeros of solutions to (1.1), we can identify two main
steps. We have first to obtain an approximation ¢, of ¢ (which is accom-
plished by Theorem 3.2, see the algorithm (2.15)), and then to solve equation
(4.2). As for the first step, note that ¢, turns out to be a rational function of
9.4, ..., q(z") (cf. (2.15)), and one can take advantage of computer algebra
techniques to get such a function explicitly. In fact, in the examples below,
we used MACSYMA. Moreover, whenever ¢ is given in terms of elementary
functions, ¢, is of the same type; in particular, if ¢ is a rational function, ¢,
is also rational.

Following this procedure, the numerator and denominator degrees of the ra-
tional functions involved in general increase exponentially with #n, thus yielding
exponential computational complexity. The convergence of the algorithm is,
however, very fast (cf. (3.16)), so that accurate results are obtained in very few
iterations. On the other hand, if we merely use numerical differentiations in
(2.15), the propagation of the local truncation error cannot be controlled after
a few iterations.

In the examples below, the carrier ¢ is given in terms of elementary func-
tions; we then proceed as follows, combining conveniently symbolic manipula-
tions and numerical evaluations in order to face only polynomial computational
complexity. It is easily seen that the evaluation of ¢, at a certain point requires

knowing ¢,4q , ..., q(z") at that point (this can be accomplished by MAC-
SYMA). In fact, ¢, requires knowing ¢, ,, 4, _,, ¢._, , which, in turn, re-
quire ¢ _,, ¢, _,, ..., $"2,, 5o that, at the end, we need ¢, , ¢/, ..., p?,
and finally ¢, 4', ..., q(z") . In computing ¢ ; and its derivatives (up to the or-

der we need) we have to calculate derivatives of quotients involving ¢ iy This
can be done via the simple algorithm used to compute ratios of formal series
(cf. [10, p. 20]). The computational complexity involved in such a procedure is
of order O(n3 ). Observe, finally, that using ¢, instead of a; throughout the
paper has the advantage of avoiding square roots at each iteration. Basing our
method on a'n directly would prevent using the previous techniques.

As for the second step, we just solve equation (4.2) by the Newton-Raphson
method. This requires only few numerical quadratures of ¢,'1/ 2(-) . Notice that
square roots are evaluated only corresponding to the last value of the iteration
number, ».

Example 1. As a first illustration, we computed the smallest 19 zeros of the
Bessel function Jy(x). Here, \/xJy(x) is a solution of equation (1.1) with

the carrier g(x) =1 — (1/2 - 1/4) /x2 with v = 0, which belongs to the class
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described in §2. We started from the 20th zero of Jy(x), Jj, ,,, that is tabulated
with 10 decimals in [1]. In Table 1, we list the computed values of the zeros
X, , along with the discrepancy between them and the tabulated values, for
four values of the iteration number, n =0, 1, 2, 3. In solving equation (4.2)
for each zero by the Newton-Raphson method, two or three iterations were
sufficient.

Example 2. In Table 2, we show results similar to the previous ones for the
zeros of the Bessel function of second kind, Y (x). Its 20th zero, Vs 20 is
given in [9] with eight decimals.

Example 3. In order to exhibit other nontrivial cases, we constructed some
examples starting from the explicit form of a phase function, a(x). Recall that
any given phase function uniquely identifies the carrier of (1.1) by relation (2.9)
as well as the associated basis, (y,, y,), ¥, = [a'l_l/2 12
Choosing a(x)=x+1/x, x >0, we get

sine, y, =[a'|” " cosa.
x®—ax®+3x* —ax? + 1

x®—2x% + x* )
This lies in the class described in §2.

In Table 3 we list the zeros of the solution y,(x), i.., the roots of the
equation

q(x) =

x+1/x=kn, k=1,2,...,19;
these can be computed directly as
kn+ (k27z2 - 4)1/2
2

for the purpose of comparison. The starting point x,, was computed from this
formula (we neglected those zeros clustering near x = 0). Table 3 is organized
in the same way as Tables 1 and 2.

Xk

Example 4. We produce another example proceeding as in Example 3. Choosing
alx) =x + logx/x2 , X > 0, we obtain again a carrier to which Theorem 3.2
can be applied. Here it was convenient to use MACSYMA in producing the
derivatives q(’) of g, since ¢ is not rational. The zeros of y, (x), i.e., the
roots of
x+logx/x2=k7t, k=1,2,...,19,

are computed by a Newton-Raphson procedure and compared with the results
of our algorithm; see Table 4. In particular, the 20th zero from which we started
was obtained in this way.

Remark 4.1. Inspection of the tables shows that, for any fixed #n, better results
are obtained for larger k’s. This can be explained by the fact that the method
is asymptotic in nature; cf. (3.16). Moreover, there is numerical evidence that
by increasing #, the larger zeros are better approximated; this is in accordance
with Theorem 3.2. The errors in computing the smallest zeros, on the other
hand, are bigger and tend to stabilize or even to increase when n increases.
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This is observable only for the first two or three zeros and can be ascribed to
the fact that such zeros may lie outside of S, . For example, the first zero in
Examples 1, 3, and 4 lies certainly outside of S, and S, because x > nv?2
forall x € S, NR; cf. (3.15).

Remark 4.2. 1t is worth noting that the stationary points of every solution y
of (1.1), i.e., the zeros of y'(x), can be computed by approximating the so-
called “second-phase” (cf. [4, §5.8, p. 39]). This can be done directly from the
approximations of ¢ ; cf. [4, (5.34), p. 45].
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