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A NUMERICAL METHOD FOR EVALUATING ZEROS 
OF SOLUTIONS OF SECOND-ORDER 
LINEAR DIFFERENTIAL EQUATIONS 

RENATO SPIGLER AND MARCO VIANELLO 

ABSTRACT. A numerical algorithm for computing real zeros of solutions of 2nd- 
order linear differential equations y" + q(x)y = 0 in the oscillatory case on a 
half line is studied. The method applies to the class q(x) = a + b/x + O(x p) 
with a>O, beR, p> 1. 

This procedure is based on a certain nonlinear 3rd-order equation (Kum- 
mer's equation) which plays a role in the theory of transformations of 2nd-order 
differential equations into each other, and was earlier introduced by F. W. J. 
Olver in 1950 to compute zeros of cylinder functions. A rigorous asymptotic 
and numerical analysis is developed by combining Boruvka's approach to the 
study of Kummer's equation and Olver's original idea. Numerical examples are 
presented. 

1. INTRODUCTION 

In this paper we develop a numerical algorithm for computing real zeros of 
solutions of 2nd-order linear ordinary differential equations, such as 

(1.1) y" +q(x)y=0, 

on a half line, in the oscillatory case. 
Our method applies to the case 

(1.2) q(x) = a + b/x + O(x A), 

with a > 0, b E R, p > 1, and the (technical) hypothesis of analyticity. 
The form of q(x) in (1.2) includes many important cases, such as that of the 
Bessel equation, the Coulomb wave equation, several cases of the confluent 
hypergeometric equation (see [13]), etc. 

The procedure is based on a certain nonlinear 3rd-order differential equation 
(Kummer's equation), which plays a role in the theory of transformations of 
linear ordinary 2nd-order differential equations into each other, and was earlier 
introduced by F. W. J. Olver in 1950 [8] to compute zeros of cylinder functions. 
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Neither a general theory nor a proof of convergence was given by Olver at 
that time, but computational work was successfully carried out with the help of 
a certain algorithm suggested by the asymptotic behavior of the zeros. 

In this paper, a more rigorous analysis is developed by combining Boruovka's 
approach to the study of Kummer's equation [4] and Olver's original idea. 
More precisely, we obtain an iterative scheme which converges in a suitable 
sense when n (the iteration number) goes to 00. Initialization is provided by 
a certain preliminary asymptotic analysis based on the asymptotic behavior of 
q(x) in (1.1). Theorem 3.2 contains the main result of the paper (the proof 
of convergence), Corollary 3.3 shows that our method yields results much more 
accurate than the asymptotics alone when computing large zeros. At the same 
time, the theorem shows that the number of iterations needed for obtaining a 
given accuracy, say c, is asymptotically proportional to - log c, as e -- 0+. 

The plan of the paper is as follows. In ?2, the problem is formulated and 
the relevant definitions and assumptions are laid down. The asymptotic part 
is worked out here, starting from the asymptotic representation assumed for 
q(x). In ?3, we give the main result, and a basic preliminary lemma is proved 
concerning a certain complex-valued function of three complex variables. In 
?4, several numerical examples are presented. 

2. PRELIMINARY ASYMPTOTIC ANALYSIS 

We are concerned with the problem of evaluating the real zeros of any par- 
ticular solution of a 2nd-order differential equation such as (1.1) on a half line, 
in the case when there exist infinitely many real zeros (oscillatory case). 

Following Borutvka's terminology, we shall below refer to q(x) in (1.1) as 
"the carrier" of the equation. For clarity and convenience, we shall consider 
first the case b = 0 in (1.2). Results, similar to those in Theorem 3.2, for the 
general case b $ 0 will be stated at the end of ?3, in Remark 3.4. 

We shall assume that the carrier enjoys the following properties. First of 
all, q(x) is the restriction to the real half line, say x > p, of a function q(z) 
holomorphic in an annular sector S y, 

(2.1) SP ={z:zEC, lz>p, Jarg(z)J<y}, 

for certain p, y, where p > 0 and 0 < y < 7r/2. Moreover, we assume that 
q(z) possesses the asymptotic structure 

(2.2) q(z) = a + Q(z), a > 0 (constant), 

(2.3) Q(Z) = O(Z P) p > 1 (constant). 

More precisely, we stipulate that the holomorphic function Q(z) is estimated 
according to (2.3) by 

(2.4) IQ(z)l < Klz P. zS E S . 

Our method for evaluating zeros is based on the derivation of a "phase 
function", a(x), relative to a given basis. Such a function is defined as any 
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C3_solution to the equation 

(2.5) tan a(x) = u(x)/v(x), 

u(x) and v(x) being any two linearly independent solutions to (1.1); cf. [4, 
pp. 36-39]. In fact, the zeros being sought are the solutions to 

(2.6) y(x, a) _ u(x) cos a - v (x) sin a = 0, 

which can be considered as a relation between x and a. A phase function has 
the property that 

(2.7) la(Xk) - a(xk-I)l = T, k = 1, 2, 3, ..., 

for any two consecutive zeros of any particular solution to (1.1), although a 
depends on the special choice of the basis (u(x), v(x)); cf. [4, p. 38]. By 
inverting relation (2.7) one can thus compute the zeros, xk . 

On the other hand, we obtain from (2.5) 

(2.8) a u(x) +v(x) 

where W is the (constant) Wronskian of u(x), v(x). 
Equation (2.8) can be used to obtain a (x), whenever u and v are at hand; 

cf., e.g., [1 1]. Moreover, one can obtain at once u2(x) + v2 (x) as a solution 
to a well-known third-order linear differential equation that can be constructed 
explicitly [2, 3, 12]. It is possible, however, to eliminate u and v in (2.8), 
obtaining a closed-form third-order nonlinear differential equation satisfied by 
a(x) alone. This task can be accomplished by repeated differentiation and 
using the fact that u" = -qu, v= -qv; the details are left to the reader. The 
resulting equation is 

(2.9) ac/2 = q(x)-{a, x}, 

where 

(2.10) {aa x}3 a(2/i) 
ca 2 

denotes the so-called "Schwarzian derivative" (cf., e.g., [6, p. 647]). Equation 
(2.9) is a special case of the so-called Kummer's equation, and appears in the 
theory of transformations of second-order linear differential equations; cf. [4]. 
One of the advantages in this approach is that one avoids evaluating the solu- 
tions u, v to (1.1) or their combination u2 + V2. 

The concept of phase plays a central role in describing solutions and proper- 
ties of second-order linear differential equations. This provides, in fact, a key 
to obtaining any particular solution to (1.1) (cf. [4, ?5.7, p. 39]) as well as its 
zeros and its stationary points (see Remark 4.2 below). Approximating a certain 
phase by our procedure described below will enable us to compute globally the 
zeros of any particular solution. 
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In [8] Olver derived a third-order nonlinear differential equation satisfied by 
the generic zero, x = p(a), of y(x, a) defined in (2.6), as a function of the 
real parameter a. This equation can be written as 

(2.11) p'2 =q(p)1-{P 2 }) 

It is easily checked that equation (2.9) changes into (2.1 1) upon the transfor- 
mation p = p(a) and conversely (note that a is invertible as sgn a =-sgn W; 
cf. (2.8)). 

In [8] Olver was mainly concerned with the evaluation of zeros of cylinder 
functions. In this case it turns out that {p, a} = O(a 3) as a -- +00, and he 
used the following iterative scheme: 

/2 1 

(2.12) =2 ) 

Pf+q(Pn1) 2l~P~} =,12.. 

suggested by (2.11). We found it more convenient to base our approach on 
equation (2.9) rather than (2.1 1). Therefore, we introduce the iterative scheme 

/2 (2.13) ao = q(X) 5 

Cn+1 = q(X)- {Ian , X}I n = 0O 1, 2. 

Note that Olver's method requires solving a differential equation at each step 
(for Pn+1 (a)), while ours merely involves quadratures (indeed, only one at the 
end of the whole procedure; see ?4). We must however obtain the zeros from 
aCn(') while Olver's approach yields them directly. Moreover, no proof of con- 
vergence of the algorithm (2.12) was given in [8]. 

In ?3, we shall prove that the sequence a' (x) defined by (2.13), with q(x) in 
the class described above, converges (in a suitable sense) to a solution, a'(x), of 
(2.9) possessing a certain asymptotic behavior. This solution, a', is such that 
relation (2.8) holds, (u, v) being a Liouville-Green basis (or WKBJ; cf. [10]), 
and W the (constant) Wronskian of u and v. The initialization in (2.13) 
is suggested by the fact that we want to approximate precisely such a phase 
function. We call this phase function a "Liouville-Green phase". 

If we set 

(2.14) -(a')/, n =0, 1, 2, .... 

the scheme (2.13) becomes 

(2.15) 00 = q(x), 
On+i = q W) + [On 5 xI 5 n = 0, 1, 25,. 

where we have introduced the symbol 

(2.16) [1 XI i 5 ()2 
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Then qn (x) will approximate q+(x), the solution to 

(2.17) 0 = q(x) + [d, x], 

into which equation (2.9) is transformed by setting 

(2.18) s/)2 

This procedure has the advantage of avoiding handling square roots, which 
causes complications when working in the complex plane. Moreover, using qn 
instead of an is also convenient in view of symbolic manipulations; cf. ?4. In 
fact, (2.15) yields On as a rational function of q and its derivatives up to order 
2n. 

Note that {ca, x} = -2[q, x] and that (2.17) is a second-order differential 
equation for q, while recursion (2.15) is no longer a differential equation for 

On+1 . Only a single quadrature on 01/2 (x) has to be accomplished at the end, 
for the value of n related to a given accuracy. 

Starting from the asymptotic assumptions (2.2)-(2.3) on the carrier q(x), 
we now obtain the asymptotic behavior of the auxiliary function q(x) which 
will be necessary for estimating the term [q, x]. 

Since in proving the convergence of on to q, estimates are needed on the 
derivatives of on - > (cf. [On, XI in (2.15)), we complexityy" all quantities 
involved, extending them from the real half line into a sector S. We start with 
a complex Liouville-Green basis in S. Following Olver [10], we split the carrier 
q(z) intotwoparts, f(z) and g(z), q(z)=f(z)+g(z), where 

(2.19) f(z) = a, g(z) = Q(z) = O(zP). 

Theorem 1 1. 1 in [ 10, Chapter 6] yields the basis 

(2.20) U(z) = f-l/4(z)el(Z)[1 + 1(z)], 

V(z) = f-1/4(z)e -i4(Z) [1 + c2(z)] 

where 

(2.21) 4(z) Z J 1/2(t) dt 

and 

(2ej (z)I < exp{ I(F)} - 1, 

(2.22)(z) ? If/ (z)I(exp{fJj?(F)}j 1), j= 1, 2; 

here Vz'j (F) denotes the variation of F, 

(2.23) F _ F(z) J(f a f 1/4 + gf1/2) dt, 

along the path lj, j = 1, 2. The path lI connects z to oo remaining inside 

Sp0 y and has the property of being "4-progressive", i.e., Im[4(z)] is nonin- 
creasing along 11 and nondecreasing along 12 (cf. [10, p. 222]). The splitting 
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of q must satisfy only the requirement that the variation V1i0.(F) be finite 
for 1=1, 2 and all z in S The choice (2.19) is acceptable. 

Above, we chose for the square root the branch that is continuous and real 
positive for real positive argument; moreover, we stipulate that (f 114)2 = 

f 1/2; cf. [10, p. 222]. Therefore, all quantities above, f 1/2(Z), ,(z), ej(z), 
F(z), U(z), V(z), are holomorphic in the simply connected region Sp, Y . We 
get 

(2.24) 4(z) = a /2z 

where the constant of integration in (2.21) has been chosen equal to zero, with 
no loss of generality. 

The variation of F(z) introduced above is defined by 

(2.25) Vz0(F) j F'(z(t)) z'(t)Idt, 

where the path l1 is parametrically defined by z = z(t), t1 < t < t2; cf. [10, 
Chapter 1, p. 29]. It is easy to check that, because of (2.24), if Im z > 0, the 
straight half-line through the origin and z E SP y, joining z to 00, can be 
taken as the path 11 . As for 12, we can take the circular arc with radius IzI 
joining z to the point (IzJ, 0) and then the real half line x > JzJ (see Figure 
1). If Im z < 0, we interchange the roles of 11 and 12. 

Therefore, we have 

(2.26) F(z) = a/2 ZQ(t) dt 

(2.27) <J0 (F) < K(p)a- 1/2 z -P j= 1, 2, 

where 

(2.28) K(p) + K 

( could be omitted in (2.28) when estimating Jzj ,). An estimate for e then 
follows: 

(2.29) ci(Z)l < vj'0 exp{Jz/J} 
< K(p)a -1'2 exp{K(p)a-1/2 pi-plzil-p j = 1, 25 

since Iz > p for any z E Sp Y . Note the double asymptotic nature in te(z) = 

O(a 1/2z' p) with respect to both the variable z, as z -x 00 in Sp, y, and 
the parameter a, as a -- +x0. This fact is related to the well-known double 
asymptotic nature of the Liouville-Green approximations [10, Chapter 6]. 

At this point, we construct the real Liouville-Green basis, i.e., a linear com- 
bination of U(z) and V(z) which is real on the real axis. Recalling that 
V(x) = U(x) (cf. [10, Chapter 6]), we obtain the real basis 

(2.30) u(x) = Re U(x), v(x) = Im U(x). 
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Im z 

z- plane/ 

xQ / 

0 X~e z 

FIGURE 1 
"4-progressive" paths in the z-plane for the case Im z > 0 

It is clear now that u(x), v(x) can be holomorphically continued (in a unique 
way) into Sp Y by the relations 

(2.31) u~z) _ U(z) + V(z) v - U(z) - V(z) (2.31) u(z) = 2 v5 )= 2i 
Correspondingly, the auxiliary function +(x) can be extended by 

w 2 
(2.32) CZ) [u2(z) + v2(z)]2 

This extension is valid, however, only in a subset of SP y where u2(z) + 
2 

v (z) :. 
This is, in fact, true in Sp Y = {x x > p}, and in Sp y as well, provided 

that 

(2.33) u2(Z) + V2(Zz) = [1/2 + c1 (Z)][1 + 82(Z)] $0 , 
i.e., for I1j(z)I < 1, j = 1,2. This entails a possible restriction of Sp I to an 
annular sector with a larger value of p (but with unchanged angle). Below we 
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shall use the same symbol for this modified sector. Equation (2.17) itself can 
be considered as a differential equation in Spy. 

We now obtain a preliminary asymptotic approximation for q(z) as z -x oo 
in Sp I . Evaluating the (constant) Wronskian 

(2.34) W[u(z), v(z)] = 1 

through (2.20), we get from (2.32), (2.33), (2.29) 

(2.35) [1+(z)]2[+2(z)]2 = a[1 + O(a /2z P)]. 

We can go further and improve this asymptotic approximation as follows. 
Using the asymptotic differentiation theorem [10, Chapter 1], we obtain from 
(2.35) 

(2.36) +'(z) = O(a z1)2 k" - O(a1/2z)-P-, ze S, y' 

where 0 < y y - 3 and p' = p/(I - sin 3), 3 being an arbitrary but fixed 
number with 0 < 3 < 7r/2. The 0-symbols in (2.36) depend on 3. 

Using this result in (2.16) we obtain 

10, ZI 
1 O (a"2z' 5 [0(a'?" 12 

(2.37) 4 a + O(al /2zI -P) 16 [a + 0(al /2z-P) J 
0(a-1/2Z --p) zE / 

and thus, from (2.17) (considered in Sp 'Y 

(2.38) q(z) = q(z) + O(a- 2z- -P), z ES, P Y. 

Remark 2. 1. Note that a larger value of a, a > 0, yields better estimates in 
(2.38). In particular, for a > 1 the estimates can be given uniformly in a. 

We observe, in closing, that we had to pass through the complex Liouville- 
Green basis, as the phase functions were earlier defined only on the real line in 
Boruvka's theory. 

3. THE ITERATIVE SCHEME 

The numerical scheme consists of solving iteratively equations (2.15) for On , 
i.e., 

(3.1) O(z) = q(z), 

)n+l1(z)=q(z)+[n, Z], n =O, 1,2. 

Below, we shall prove the convergence of this scheme (in a suitable sense) 
to the solution of (2.17) corresponding to the Liouville-Green basis. For this 
purpose we need a basic lemma. Hereafter, for convenience, we change the 
independent variable z by setting z = fit, with ,B > 0 to be specified later. 

Such a transformation takes equation (1.1) into 

(3.2) /y + 4(t)j = 0. 
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for y(t) = y(/Jt), where 

(3*3) 4(t) 2fq(ft) = fl[a + 0(38Pt-P)] 

Below, we apply algorithm (3.1) to (3.2)-(3.3), thus obtaining 

(3.4) Xo(t) = q(t) 
>n+l (t) = 4(t) + [On, t], n = 0 ,1, 2. 

These quantities approximate (in the sense defined in Theorem 3.2) the func- 
tion 

(W) (3.5)~ ~ ~~~~~~~~t_ 

[u2(/Jt) + V2(/8t)] 
a solution of 

(3.6) q$=cj(t) + [q, t]. 

It is easily shown that /(t) = fl24(flt) and q$(t) = O2qn (,Bt) . Our objective 
is to approximate q, but we find it more convenient to first consider q and 
then to go back to q. 

Lemma 3.1. Let 

(3.7) G1z --3+ 5/22 (3 7) G~~z,, Z2 5 Z3)- 4 zl 16 (zl 

be a complex-valuedfunction of the three complex variables z 1, Z2, z3, defined 
on the closed polydisc P = Di x D2 x D3, where D1 = B(c, c1), D2 = B(O, c2), 
and D3 = B(O, e3), with B(zo, r) c C denoting the open ball with center in zo 
and radius r and 0 < 61 < c (c a positive constant), c2 > 0, c3 > 0; q e C 
is a constant. Then G is uniformly Lipschitz continuous in P, 

(3.8) JG(z) - G(q)l < x1z - qJ, Vz, q e 

where z ( whee z (z1 2 Z3), 1- (ql1 5 2' 5 3) and 

~~~max~fc3 _____2 5c2 1 
(3.9) x max_ __ 

+ (9 X 4 
{(c-,el 

)2 + 2(c-ce)3 ' 2(c -el)2 ' c-el 

Proof. The function G is holomorphic in P (being separately holomorphic in 
each of the z 's, by Hartog's theorem). We obtain 

_G _z_ 5 z2 OG _ Sz2 G _ 1 (3.10) 0z 2z z' 
az 2z2 8 z3 ' aZ2 8 z2 ' O3z 4Z 1 1 ~~~~13 1 

and then, by the mean-value theorem, 

(3.11) JG(z) - G(q)l < sup {11 grad G(T)II} * JZ - 'iJ; 
,rE[z, q] 

cf. [7]. In fact, this property holds for Cl-mappings G: (U c B1) -- B2, where 
U is a convex subset of B,, and B, and B2 are Banach spaces. In (3.11), 
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[z, q] denotes the segment in C3 joining z and q, which is obviously a subset 
of P for any z, q E P, since P is a convex set in C3. The norms on the 
right-hand side of (3.11) represent the Euclidean norms in C3. Using (3.11) 
we get (3.8), (3.9), since 

(3.12) HgradG (r) <Vmax 
G (r) 

1<i<3. Oz. 

and 

<OGI 1 e3 _2_ 

(3.13) i0z I 4 (c _-c1)2 8 (c-9 )' 
OG 5 C2 OG I I 
i0z2- 8(c -1)2 a0z31 4-(c-,e 

uniformly in P. The lemma is thus proved. o 

o <~~~~s 
0'~~~~~~~~S 

FIGURE 2 
The decreasing sequence of sectors Sn in the z-plane, used in 
Theorem 3.2 
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Consider the iterative scheme (3.4) and recall that Spy is the (annular) 
sector in which the estimate (2.38) holds. We denote by S(O, y') the sector 
having its vertex at the origin and semiangle y', and we consider a sequence of 
sectors 

(3.14) Sn -X + S(?, Y'), 

where xn, their vertices, is an increasing sequence of positive numbers (see 
Figure 2). At this point we state our main result as a theorem. 

Theorem 3.2. Suppose that equation (1.1) is given with the carrier q(z) satisfying 
all hypotheses stated in ?2. Let fi be any fixed real number with fi > a- . 
Then there exists x0 E S IY, n R, which depends on all parameters entering the 
problem (but not on fi), such that, if Sn is the sector defined in (3.14) with 

(3.15) x =x0 + n/3V'I, n 0 sin y' 
then the function On (z) given by the scheme (3.1) is holomorphic in Sn and 
"converges" to the function 0(z) related to the Liouville-Green basis by (2.32). 

The convergence is in the sense that 

(3.16) ~ ~ ~ ~ a1/2 1/2 -2n 
(3.16) 10n(z) - ((Z)l = a- (fia ) O((Izl - nfl\4) 
for z eSn and n = 0, 1, 2, .... 
Proof. The proof proceeds inductively on n E N. We first change z into t, 
z = fit in our problem. 

The transformation z = fit takes equation (1.1) into (3.2) and its carrier 
q(z) into 4(z) given by (3.3). Correspondingly, the Liouville-Green basis of 
(1.1), (u(z), v(z)), is transformed into (a(t), v (t)). Let 0(t) be the function 
defined in (3.5), i.e., the quantity corresponding to q for equation (3.2), (3.3). 
Note that this is not the transform of 0 under z = fit. The initial sector SP y' 

of the complex z-plane is transformed into the sector Sr, y,, ,where r' =p 
of the complex t-plane. 

2 2 thesiae238beo s As 0(t) = fi k(fit) and qn(t) = fi On(fit), the estimate (2.38) becomes 

(3.17) q(t) =-(t)+fl-Pa-l/2O(t 1P) teSz y 

As for the derivatives, we get from (2.36) 
1/2 3-p qV'(t) , t e S /t p/ (3.18) q'(t) =a' t ?"(t) = a 3) t E Sr-Y 

We are now ready for the inductive proof. For n = 0, we have from (3.17), 
(3.4) 

(3.19) kb(t) - q0(t)j = 1P(t) - j(t)l = 1-p Pa "/20(t-1-P), t E S./ y/ 

Suppose that the estimate 

(3.20) ~ ( )1 31-pa-1/2 (a1 /2-2n -no) ) (3.20) kk~n(t) - k~t)I = fi' a0fa ((ItI - n" 
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holds in the sector Sn with vertex in tn- x0 // + nVd/ sin y', for some x0 > p' 
(to be determined below); cf. (3.15). Then, as in the proof of Lemma 3.1, 

10$(t)-q$n+1(t)0 = IG(?b, q, q$")-G(qn ,n q q$n)I 
(3.21) < sup {Il grad G(T)ll} 11w -nl 

TE[w w11 

where w-(n,= ',q ")e C3 and w E(q$ ,q$', ,q$,)E C3 depend on t. We still 
have, however, to identify a polydisc in which Lemma 3.1 holds. In estimating 
the norm IIw - wn II, we use (3.20) in the Cauchy formula to get 

(3.22) 10 (t)-?)n (t) (t (V0)I Sup Iq$(4)-qn (4C) l t E Sn+1 

where C denotes the circle with center in t and radius V's. The sup in (3.22) 
is estimated by (3.20) using the structure of the sequence of sectors Sn Thus, 

-U) j! I____ -pa -1/2 1fa'/2 -2n 
(3.22') kk (t)-k)(t)I < ! -a (fa/ 

x 0([Itl - (n + l~1)X2] 1 P), t ES~ 

It is clear, finally, that 

||w - Wn 1 < X'3maxf 10-On I, Id) -nil IC) dnil 

(3.23) 
- 
/l-P a-12 (fa 2)-2n 

*0[(ItI - (n + 1)l) -P], t E 
In order to estimate 11 grad GlI by Lemma 3.1, we have to estimate the radii 

of the component discs of the polydisc. We have 
2 - 2 

(3.24) 20n(t) al < 
i-(t)p-, al + 

12n(t) 
- 

1/22 

320po(t-p) + /l-Pa-2 (fia 72 02n0((ItI - nv2) P), 

and then, as ,Ba 1/2 > 1, the estimate 

(3.24') l$>n(t)/3-( al < If Po(( ))+3 a IO ((ya 3) 3 

say, uniformly in n and t e Sn+1 . Similarly, noticing that 

(3.25) k '(t) ? < a' /2fp (3(z)-) = 32 1 /2 (3) O(Z -P) 

<2a 1/2 i(Z-p) < f2 1/2 i( -P , for t </3a 0(z )</3a 0(~x0) forESn+i, 

as Izi x0 + (n + 1),VB'2/siny', and thus IzI > x0 as well as Izl > V'-/.3, and 

[ \P-11 2 

2 1/23-p Z 2 1/2 -p+l 

<f 2a/2 0(x -P+) for teS 
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we obtain 

1$) (t)i < miq(t)I + m '(t)- - t 

< f2 1/2Q( V-P) + Ia -1/2O [(X1)Pl] 

2[a 1/2( 1-p) + a-1/2 p- 

(3.26) =f [ O x0+a Ox )e2 

3.26)(t)I < q(t) + kb (t)- n" 

< ?2a1/20(x-P+I) + ?I-a-1/2 [(Xy P11] 

32[al/2Q( -P+l) + a-'/20(x -P)]-8 

Writing 

(3.27) = fi(xo X a)fi2a, i = 1, 2, 3, 

fi being defined by (3.24'), (3.26), we first claim that 1/(c - e3) ? 4(1/f32a), 

with c -f2a. This entails the estimate 
2 

(3.28) 0< 8 < 4a, 
3 - 4 

which can be satisfied by choosing x0 sufficiently large, say x0 > x , since 

fi(xo, a) is infinitesimal as x- +oo. Now we observe that (3.24') ensures 
that q$n does not vanish in Sn+, and therefore 0n+1 is holomorphic in Sn+j . 
We then claim x < (V3/74)/(c - e3) (C 

2 
a), i.e., we can choose e and 

e2 in such a way that the other two components of grad G are estimated by 
4 (1'fi2a). This can be done again, because fi is infinitesimal, for xO suffi- 
ciently large, say x0 > x>'. We conclude that 

XO 

(3.29) x ? , 

and hence, by Lemma 3.1, using (3.21) and (3.23), we get 

kb(t) - n+1(tI 

~~ 1 I -p 1/2 1/2-2n 
(3.30) Y 32a a (la ) O[(Itl - (n +1),) P] 

fl ap - f /23a)-n) 0[(Itl - (n + 1),r) 'P], , t G Sn+1 5 

provided that x0 > max{p', x0, x}0 }. This value of x0 depends, in general, 
on all parameters entering the problem (except f,). Comparing (3.30) with 
(3.20) and going back to the variable z, it is clear that the inductive proof is 
complete. o 

Some observations are now in order. In the proof above, the condition 
fl2a > 1 was needed. The transformation z = ft with ,B > a /2 iS therefore 
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instrumental in reducing equation (1.1) to an equation to which the algorithm 
(3.1) can be applied when a < 1. Moreover, it is clear from (3.16) that the 

larger fi2a the faster the "convergence" of the algorithm. However, larger val- 
ues of fl reduce the Re(t)-interval for a given x-interval (x = Re(z)) in which 
we want to evaluate zeros. Therefore, the zeros are not so well separated when 
we choose fl large. 

Going back to the z-variable, the vertices of the sectors Sn increase linearly 
with fl (and with n); cf. (3.15). This entails that the zeros lying outside Sn 
cannot be approximated by using the estimate in (3.16) for q. 

As a corollary of Theorem 3.2, we can relate the desired accuracy to the 
number of iterations needed to attain it. 

Corollary 3.3. The number of iterations, n(e), needed to attain the accuracy e 
in the iterative scheme (3.1) is asymptotically given by 

(3.31) n (,) -Ie log I +0+, 

uniformly in z, z E Sn(,). 
Proof. From (3.16), the condition IkOn(z) - q$(z)I < e, with IzI - n/3V, > x0 
for all z in Sn, i.e., 

a- 1/23 a) nO(x- I-) < 8 5 VZ E Sn 

is certainly satisfied when n > (C - loge)/ log(fi2a) for some constant C, and 
thus choosing 

n = n(e) loge ) , 0+, z E Sn(e). 
log(fi2a)'5 

In the next section, we shall numerically compute zeros of solutions to equa- 
tion (1.1) starting from the approximation O$n of the function 0q. If we approx- 
imate k within an accuracy e, i.e., use Obn() , we "lose" zeros in the sense that 
our procedure is asymptotic in nature, and only those zeros lying in Sn(w) can 
be approximated. In fact, we get from [5, Chapter XI, Corollary 5.3, p. 348] 
the asymptotic estimate 

(3.32) N(p, x) -x as x -+xoo 
7r 

for the number of zeros in the interval (p, x) . Using (3.31) in 

(3.33) Xn(e) _XO+ i, n n(e) , 

and this in (3.32) with x = Xn(e), we obtain 

(3.34) N(p, Xn(e)) A logeI as e 0+ 

where 

(3.35) A y' l1,2a 
7r sin Y'log(i2 a) 
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This shows the advantage of our approach compared to the mere asymptotic 
approximation (q - 00 _ q). In fact, in order to obtain the same degree of 

accuracy, the latter requires x > x(e) =-(Ba- 1,/2)1/(l+P)-1/(+P) where B is the 
constant in the 0-symbol in (2.38). We emphasize, finally, that our approach 
is not only better because of logarithmic growth as opposed to power growth as 
e -+ 0+, but also because we made coarse estimates in obtaining (3.31). Better 
results could have been obtained by taking into account the z-dependence in 
(3.16). 

Remark 3.4. Theorem 3.2 also holds for the more general class of carriers 

b 
(3.36) q(z)= a + - + Q(Z), a>O, bcER, 

Q(Z) = (z P), p> 1. 

This form allows us to include carriers having full asymptotic or convergent 
power series expansions in z I like EJOa Z a iz. We can write 

(3.37) q(z) ( + 2 ) + O(z) =min{p, 2}, 

and split q(z) as q(z) =f(z)+g(z), with 
/3.38) ( b 1 2 b2 1 

(3.38) f (z)~ (\1-a'+ 2v 5z bl)T) 

Indeed, in this case it is easily shown that the 4-progressive paths are un- 
changed with respect to the case b = 0, the variation defined in (2.25) being 
correspondingly finite at the same time. We shall choose Izj > lbl/2a, which 
amounts to selecting the principal branch of f1/2 (Z). This entails, possibly, 
an increase of the radius p in the annular sector, Sp y. Moreover, it turns 

out that V1>i = O(zi), where A = minfp - 1, 1}, and then = O(z ), 
+(z) = q(z) + O(z i 2). We conclude that Theorem 3.2 holds with A + 2 
replacing p + 1. We observe, in closing, that the 0-symbols in the estimate 
of J/jJi, and thus in the estimates of 8 and q, depend in general on b (in 
addition to a , p y, p, K, as before). 

4. NUMERICAL EXAMPLES 

If a(x) denotes a Liouville-Green phase, then the relation (2.7) and the 
definition (2.18) ensure that the equation 

(4.1) a(xk)- a(x) j 12() dt - 

Xk being any fixed zero, has the unique solution x = 
xk-i (relation (4.1) ac- 

tually refers to the Liouville-Green basis (v, u)) . In practice we solve, instead, 
equation 

(4.2) j O$nl (t)dt- 7r = 0. 
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In fact, we start from an approximation xh of a certain "large" zero, Xh, 
and compute successively the approximate values of the smaller zeros xk, 
k = h - 1, h - 2, ... , which are denoted by Xk . The initial value kh must be 
supplied independently of our method. Moreover, throughout all of the proce- 
dure, the approximation q$n of 0 is used, the corresponding error being given 
by Theorem 3.2. 

Therefore, in evaluating zeros of solutions to (1. 1), we can identify two main 
steps. We have first to obtain an approximation q$n of 0 (which is accom- 
plished by Theorem 3.2, see the algorithm (2.15)), and then to solve equation 
(4.2). As for the first step, note that q$n turns out to be a rational function of 

q, q , ... , q(2n) (cf. (2.15)), and one can take advantage of computer algebra 
techniques to get such a function explicitly. In fact, in the examples below, 
we used MACSYMA. Moreover, whenever q is given in terms of elementary 
functions, qOn is of the same type; in particular, if q is a rational function, qOn 
is also rational. 

Following this procedure, the numerator and denominator degrees of the ra- 
tional functions involved in general increase exponentially with n , thus yielding 
exponential computational complexity. The convergence of the algorithm is, 
however, very fast (cf. (3.16)), so that accurate results are obtained in very few 
iterations. On the other hand, if we merely use numerical differentiations in 
(2.15), the propagation of the local truncation error cannot be controlled after 
a few iterations. 

In the examples below, the carrier q is given in terms of elementary func- 
tions; we then proceed as follows, combining conveniently symbolic manipula- 
tions and numerical evaluations in order to face only polynomial computational 
complexity. It is easily seen that the evaluation of qOn at a certain point requires 
knowing q, q t ... , q(2n) at that point (this can be accomplished by MAC- 
SYMA). In fact, qOn requires knowing OnP- 1'5 O 1 -I n-l 1 which, in turn, re- 

quire On-2 d O'n-2d ... ' -2 2so that, at the end, we need Xl, X, .., ( 2), 

and finally q, 5q', ... , q(2n) . In computing qj and its derivatives (up to the or- 
der we need) we have to calculate derivatives of quotients involving qjIl . This 
can be done via the simple algorithm used to compute ratios of formal series 
(cf. [10, p. 20]). The computational complexity involved in such a procedure is 
of order 0(n3). Observe, finally, that using qOn instead of a' throughout the 
paper has the advantage of avoiding square roots at each iteration. Basing our 
method on a' directly would prevent using the previous techniques. 

As for the second step, we just solve equation (4.2) by the Newton-Raphson 
method. This requires only few numerical quadratures of q$1'2(.). Notice that 
square roots are evaluated only corresponding to the last value of the iteration 
number, n. 

Example 1. As a first illustration, we computed the smallest 19 zeros of the 
Bessel function Jo(x). Here, V/iJo(x) is a solution of equation (1.1) with 

the carrier q(x) = 1 - ( 2 _ 1/4)/x2 with M = 0, which belongs to the class 
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described in ?2. We started from the 20th zero of Jo(x) , jo 20' that is tabulated 
with 10 decimals in [1]. In Table 1, we list the computed values of the zeros 
Xk, a long with the discrepancy between them and the tabulated values, for 
four values of the iteration number, n = 0, 1, 2, 3. In solving equation (4.2) 
for each zero by the Newton-Raphson method, two or three iterations were 
sufficient. 

Example 2. In Table 2, we show results similar to the previous ones for the 
zeros of the Bessel function of second kind, Y5(x). Its 20th zero, Y5,20 is 

given in [9] with eight decimals. 

Example 3. In order to exhibit other nontrivial cases, we constructed some 
examples starting from the explicit form of a phase function, a(x) . Recall that 
any given phase function uniquely identifies the carrier of (1.1) by relation (2.9) 
as well as the associated basis, (y1 , Y2) , y1 la'- 12 sin a, y2- 12o 

Choosing a(x) = x + 1/x, x > 0, we get 

x8 - 4x + 3x -4X2 + 1 
q(x)= x8-2x6+x4 

This lies in the class described in ?2. 
In Table 3 we list the zeros of the solution y1 (x), i.e., the roots of the 

equation 
x+l/x=k7r, k=1,2,...,19; 

these can be computed directly as 

k7r + (k27r2 _4)1/2 

Xk= 2 

for the purpose of comparison. The starting point x20 was computed from this 
formula (we neglected those zeros clustering near x = 0) . Table 3 is organized 
in the same way as Tables 1 and 2. 

Example 4. We produce another example proceeding as in Example 3. Choosing 
a(x) = x + logx/x2, x > 0, we obtain again a carrier to which Theorem 3.2 
can be applied. Here it was convenient to use MACSYMA in producing the 
derivatives q(i) of q, since q is not rational. The zeros of y, (x), i.e., the 
roots of 

x+logx/x 2=k7r, k=1,2,...,19, 
are computed by a Newton-Raphson procedure and compared with the results 
of our algorithm; see Table 4. In particular, the 20th zero from which we started 
was obtained in this way. 

Remark 4.1. Inspection of the tables shows that, for any fixed n, better results 
are obtained for larger k's. This can be explained by the fact that the method 
is asymptotic in nature; cf. (3.16). Moreover, there is numerical evidence that 
by increasing n, the larger zeros are better approximated; this is in accordance 
with Theorem 3.2. The errors in computing the smallest zeros, on the other 
hand, are bigger and tend to stabilize or even to increase when n increases. 
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This is observable only for the first two or three zeros and can be ascribed to 
the fact that such zeros may lie outside of S . For example, the first zero in 
Examples 1, 3, and 4 lies certainly outside of S2 and S3, because x > n V" 
for all X ES, nR; cf. (3.15). 

Remark 4.2. It is worth noting that the stationary points of every solution y 
of (1.1), i.e., the zeros of y'(x), can be computed by approximating the so- 
called "second-phase" (cf. [4, ?5.8, p. 39]). This can be done directly from the 
approximations of 0; cf. [4, (5.34), p. 45]. 
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